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Abstract

Humans use both linear and hierarchical representations in lan-
guage processing, and the exact role of each has been debated.
One domain where hierarchical processing is important is noun
phrases. English noun phrases have a fixed order of prenom-
inal modifiers: demonstratives – numerals – adjectives (these
two green vases). However, when English speakers learn an
artificial language with postnominal modifiers, instead of re-
producing this linear order they preserve the distance between
each modifier and the noun (vases green two these). This has
been explained by a hierarchical homomorphism bias. Here,
we investigate whether RNNs exhibit this bias. We pre-train
one linear and two hierarchical models on English and expose
them to a small artificial language. We then test them on noun
phrases from a study with humans and find that only the hier-
archical models can exhibit the bias, supporting the idea that
homomorphic word order preferences arise from hierarchical,
and not linear relations.

Keywords: hierarchical processing, noun phrase, artificial lan-
guage learning, neural networks, homomorphism

Introduction
Do humans represent language primarily in terms of linear
or hierarchical structure? Usage-based theories of language
(Christiansen & Chater, 2016; Bybee, 2006; Tomasello, 2003)
tend to emphasize the local nature of acquisition and process-
ing. This locality principle naturally promotes the linear struc-
ture of a language as the defining factor influencing emergent
linguistic representations. By contrast, alternative theories
of language are based on the fundamental hierarchical nature
of linguistic representations (Chomsky, 1957; Adger, 2003).
While both local/linear and hierarchical representations may
play a role in language, debates about the exact role of each
are ongoing (e.g., Brennan et al., 2016; Widmer et al., 2017).

One particularly fruitful testbed in this domain has been the
order of elements in a noun phrase—on its face a relatively
simple structure, but one where significant hierarchical orga-
nization has nevertheless been hypothesized (Adger, 2003;
Cinque, 2005). In English, modifiers including adjectives
(green), demonstrative pronouns (this), and numerals (one),
are all placed in the prenominal position (green vases). What
happens when speakers of a language like English need to
learn a language with postnominal modifiers (vases green)?
If they have never encountered a string of multiple modifiers
in this language, one possible strategy would be to reproduce
them in their English linear order, but in postnominal posi-
tion: vases these two green. However, a number of studies

(Culbertson & Adger, 2014; Martin et al., 2019, 2020; Cul-
bertson et al., 2020) show that learners instead tend to reverse
the order of modifiers: vases green two these. This result
has been interpreted as evidence that speakers are making
inferences based on hierarchical structure. More specifically,
speakers have been argued to demonstrate a cognitive bias
for homomorphism—a transparency of mapping between the
underlying hierarchical structure of the noun phrase, and the
linear order of elements (Martin et al., 2020). In the case of a
noun phrase, the underlying structure is associated with seman-
tic scope (Adger, 2003; Culbertson & Adger, 2014; Martin et
al., 2020): adjectives form a semantically coherent unit with
the noun, thus forming a constituent, numerals then define
the quantity of this constituent to create a countable unit, and
demonstratives map this unit to the pragmatics of the context
(e.g., location in relation to the speaker). Therefore, regard-
less of whether modifiers are in prenominal or postnominal
position, their order relative to the noun reflects this hierar-
chy of meanings. Indeed, the vast majority of the world’s
languages feature a linear order of nominal modifiers that is
homomorphic in this way (Cinque, 2005; Dryer, 2018).

If this homomorphism bias is a property of the human cog-
nitive system, it must be possible to design a learning model
from which this bias emerges. In this study, we take the first
step in this direction and test three computational models on
their ability to exhibit this bias and replicate human-like pref-
erences for noun phrase word order. Specifically, we pre-train
three recurrent neural network (RNN) language models—one
linear (LSTM) and two hierarchical (Ordered Neurons and
RNNG)—on English corpora. Then, following Culbertson
& Adger (2014), we expose the models to a small artificial
language consisting of noun phrases with a single postnom-
inal modifier and test the models on noun phrases with two
postnominal modifiers, using the language models’ ability to
predict the next word in a sequence. This setup allows us to
test whether the models can generalize to unseen grammatical
structures, rather than merely reproduce structures from the
input. In other words, a model not only has to induce the
structure of the English noun phrase during pre-training, but
also mirror that structure in the artificial noun phrases with
multiple modifiers, without ever seeing such phrases in the
input. Our goal is to determine whether the models are indeed
able to show the preference for the homomorphic word order
consistently observed in human speakers.



Table 1: Three conditions in the experiment of Culbertson &
Adger (2014).

Condition Parts of speech Example

DEM-ADJ-N demonstrative–
adjective–noun

this green vase

DEM-NUM-N demonstrative–
numeral–noun

these three keys

NUM-ADJ-N numeral–adjective–
noun

two big boxes

To preview, we find that the linear LSTM model does not
show human-like preferences, supporting the idea that these
preferences do not arise purely from linear information about
word order. By contrast, the hierarchical models fare better:
the Ordered Neurons model correctly predicts a homomor-
phism preference in two out of the three conditions tested,
while the RNNG predicts this in the third condition only.

Background
The homomorphism bias in artificial languages
Culbertson & Adger (2014) trained and tested English native
speakers on an artificial language which consisted of noun
phrases with modifiers in the postnominal position (e.g., vase
green). For simplicity, English words were used in this experi-
ment. During the training, participants only saw phrases with
a single modifier: an adjective (green), a demonstrative pro-
noun (this), or a numeral (two), accompanied by their English
‘translations’ (i.e., the same noun phrases with the prenominal
order of modifiers). In the testing phase participants had to
choose translations for English phrases with two modifiers in
three conditions (see Table 1), even though they did not see
such phrases in the artificial language during training. If in
this task English-speaking participants rely primarily on the
linear structure of their native language, they would produce
noun phrases such as vase this green (N-DEM-ADJ), simply
moving the two prenominal modifiers to the postnominal po-
sition in their original order. Instead, participants showed
preferences for the opposite, homomorphic word order (e.g.,
N-ADJ-DEM, vase green this) in all the three conditions. In a
follow-up experiment with novel (non-English) words (Martin
et al., 2020), similar results were obtained, although the pref-
erence for the homomorphic order was generally less reliable
in the NUM-ADJ-N condition than in the other two. These
findings received further support from follow-up studies with
Thai speakers learning an artificial language and with En-
glish speakers producing spontaneous sequences of gestures
(Culbertson et al., 2020). To summarize, there is a robust
preference for homomorphic word order in noun phrases.

Hierarchical biases in neural networks
A number of recent studies have explored the inductive biases
of neural architectures. For example, Ravfogel et al. (2019)
proposed a paradigm in which neural networks are trained on

corpora consisting of artificial versions of English, which dif-
fer from natural English only in some typological properties.
The models are then evaluated on their ability to predict the
same linguistic feature (e.g., subject–verb number agreement)
across the artificial languages. Using this method, Ravfogel et
al. (2019) show that a bidirectional LSTM has a recency bias,
i.e., favoring dependencies with recent elements. This char-
acterizes an LSTM as a first and foremost linear model, even
though it is able to capture some hierarchical long-distance
dependencies (e.g., Gulordava et al., 2018).

White & Cotterell (2021) use a similar methodology of gen-
erating multiple constructed artificial languages to investigate
how successfully on average neural models (LSTM and Trans-
former) learn each language. They find that LSTMs do not
have a preference for a particular word order. Transformers
have more difficulties with some word orders than others, but
their preferences do not correspond to hypothesized human
preferences—i.e., based on the distribution of word orders in
the world languages.

McCoy et al. (2020) study inductive biases in linear (LSTM,
GRU) and tree-based (ON-LSTM, RNNG) models using syn-
tactic tasks that probe the models’ capacity to learn hierar-
chical generalization, namely question formation and tense
reinflection. They find that only the tree-based models are
capable of making the correct generalizations.

Based on these findings, in our experiments below we use
two hierarchical models: the ON-LSTM (Shen et al., 2018),
which implicitly encodes hierarchical structure in its architec-
ture, and the RNNG (Dyer et al., 2016), which is trained on
parse trees and thus explicitly learns the hierarchical structure
of a language. We also use a ‘vanilla’ LSTM as a baseline
model. We expect to see human-like homomorphic prefer-
ences in noun-phrase word order in the two hierarchical mod-
els, but not in an LSTM.

Methods
Our general approach for all models is to pre-train them on
an English corpus (either Wikipedia or Penn Treebank, as
described below) and then train them for a small number
of epochs on artificial language noun phrases. During the
artificial language training, we use the next-word prediction
setup to test each model at certain intervals on the test stimuli
consisting of noun phrases with two postnominal modifiers.
Given a pair of stimuli with homomorphic vs. linear order,
we identify each model’s preference by measuring which of
the two sequences that model considers to be more probable.
All models are word-level language models, and no subword
tokenization is used.

Models
LSTM. LSTM is a RNN model that has been commonly used
for studying human sentence processing (e.g., Gulordava et
al., 2018; Marvin & Linzen, 2018; Futrell et al., 2019). It is
trained on the task of predicting the next word in a sentence.
As explained in the previous section, it primarily relies on
local dependencies and has no hierarchical biases encoded in



its architecture. We use a pre-trained model of Gulordava et
al. (2018)1, with 2 stacked hidden layers, 650 units per layer,
batch size 128, learning rate 20.0 and dropout rate 0.2. We
further use Van Schijndel & Linzen’s (2018) implementation
to train and test this model on our artificial languages. We
use the LSTM as a baseline, to ensure that the preference for
the target word order does not arise in a linear model due to
unknown properties of English that have nothing to do with
homomorphism.

ON-LSTM. The Ordered Neurons LSTM (ON-LSTM) model
(Shen et al., 2018) adds a hierarchical bias to the ‘vanilla’
LSTM model. While in the LSTM model all neurons in the
hidden layer function in the same way, the ON-LSTM model
promotes the differentiation of neurons: higher-order neurons
only get updated once the lower-order neurons have been
updated. Therefore, the higher a neuron’s ranking, the longer
it stores information, which results in tree-like hierarchical
processing. Thanks to this feature, the model has been used
in other studies looking at the hierarchical processing and
syntactic generalization in RNNs (McCoy et al., 2020; Hu et
al., 2020). We use the original implementation by Shen et al.
(2018)2 and their default hyperparameters: 1150 units in the
hidden layer, embedding size 400, batch size 20, dropout and
weight dropout 0.45 (0.3 for the recurrent layer, 0.5 for the
input layer), and 1000 epochs for pre-training.

RNNG. While the two previous models are trained on text
data, the Recurrent Neural Network Grammars (RNNG) model
(Dyer et al., 2016) is trained on constituency trees to perform a
parsing task. Therefore, it explicitly encodes hierarchical rela-
tionships in the training data. We use a recent implementation
(Noji & Oseki, 2021)3 based on its efficiency, with the default
parameters (Adam optimizer, learning rate 0.001, dropout 0.3,
18 pre-training epochs), but smaller batch size of 128 due to
technical limitations.

English pre-training
We use a publicly available LSTM model pre-trained on a
Wikipedia corpus (approximately 80M tokens, Gulordava et
al., 2018). For consistency, we use the same corpus for training
the ON-LSTM model. The RNNG, however, requires a parsed
corpus, and we cannot train it on the Wikipedia data. Instead,
we use the Penn Treebank data set (Marcus et al., 1993), as in
the original study (Dyer et al., 2016).

The Wikipedia corpus could be directly used for pre-training
the LSTM and ON-LSTM, while for pre-training the RNNG
we had to introduce additional annotations in the Penn Tree-
bank. Specifically, all noun phrases in the corpus were repre-
sented as shallow linear structures, without any hierarchy. If
we trained the RNNG on this data, it would not be able to use
its capacity as a hierarchical model in the noun phrase. There-
fore, we augmented the Penn Treebank data with additional

1https://github.com/facebookresearch/colorlessgreenRNNs
2https://github.com/yikangshen/Ordered-Neurons
3https://github.com/aistairc/rnng-pytorch

noun phrase annotations (cf. examples 1 vs. 2), to introduce
the hierarchical structure in the English noun phrases.

(1) (NP (DT a) (JJ possible) (NN acquirer))

(2) (NP (DT a) (NP (JJ possible) (NP (NN acquirer))))

An alternative would be to use a corpus with hierarchical noun
structures, but to our knowledge such corpora are not readily
available. We use the standard train–development–test split of
the Penn Treebank to pre-train the RNNG.

Artificial language training
We try to keep our computational simulations as close as pos-
sible to the original experiment of Culbertson & Adger (2014).
Following their setup, we consider the same 30 nouns, 10
adjectives, 10 numerals, and 4 demonstratives. Using this
vocabulary, we generate 10 different training sets, where each
training set consists of 30 noun phrases with a single postnom-
inal modifier, 10 of each kind: N-ADJ (scarf blue), N-DEM
(car that), and N-NUM (shirts six).

While all words from Culbertson & Adger’s artificial lan-
guage data appeared in the Wikipedia training corpus, some
of them were missing from the Penn Treebank, a situation
that could not arise in the original experiment where all the
native English speakers were familiar with the words in the
artificial language. Therefore, we extended the vocabulary
using words from the Penn Treebank corpus. Only 13 nouns
appeared in the Penn Treebank, and one option would be to
choose 17 extra nouns to have 30 in total, as in the original ex-
periment. Instead, we used additional 13 high-frequency and
13 low-frequency nouns to keep the size of the noun classes
(original, low- and high-frequency) balanced, so that the ar-
tificial language training data for the RNNG was somewhat
larger, with each training set including 39 instead of 30 items.
We also used 4 frequent adjectives from the Penn Treebank, in
addition to the 6 adjectives from the original set.

Importantly, because all models are pre-trained on full En-
glish sentences, training them on isolated noun phrases from
an artificial language could potentially introduce an additional
confound, the form of the training stimuli. Instead, we con-
verted all the training data sets described above into full sen-
tences that consist of a subject and a transitive verb, followed
by the target noun phrase. To form these sentences, we ran-
domly choose one of the four personal pronouns (I, they, she,
he) and one of the two verbs (see, want) in the correct gram-
matical form, as shown in (3). This construction was chosen
thanks to its high degree of abstraction: more specific (and
less frequent) constructions could bias the model towards re-
producing patterns seen in the training data.

(3) She wants shirts six.

Note that for training the RNNG on the artificial language,
we converted these sentences into parsed sequences, using
the standard Penn Treebank annotation augmented with the
hierarchical noun structure as described above.
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Figure 1: Percentage of sentence pairs for which the LSTM
model shows preference for the homomorphic word order.
Results are averaged over training/test sets and test items,
error bands show the standard error of the mean over different
test items.

Artificial language testing
Analogously, we generated 10 different test sets, each of them
including only nouns that do not appear in the corresponding
training set. Each test set included 30 pairs of noun phrases
with two postnominal modifiers, 10 for each of the three con-
ditions: DEM-ADJ-N, DEM-NUM-N, and NUM-ADJ-N). (For
the RNNG, there were 13 pairs in each condition, 39 in to-
tal.) Each pair consisted of two alternatives: homomorphic
(e.g., pears purple those) and non-homomorphic (pears those
purple). We tested how probable the model finds each alter-
native, using the commonly adopted approach of measuring
average sentence surprisal (Goodkind & Bicknell, 2018): the
alternative with a lower surprisal value indicated the model’s
preference. We report all the results averaged over the 10
training–test set combinations.

Results
LSTM
We first look at the LSTM, our baseline model. Recall that it
has no hierarchical bias of any kind, and therefore it would be
surprising to see a preference for homomorphic word order in
this model. The results in Figure 1 support this intuition. Be-
fore any exposure to the artificial language, the model shows
a clear preference for the linear word order in all three condi-
tions. This pattern suggests that the model readily transfers its
knowledge about the English linear order of modifiers (DEM-
NUM-ADJ-N) from the pre-training data. Because the LSTM
mostly relies on local transitional probabilities, patterns such
as DEM-ADJ, DEM-NUM, and NUM-ADJ are more likely than
their inverse counterparts.

Interestingly, the preference for the linear order gets no-
ticeably smaller with more training in the DEM-ADJ-N and
NUM-ADJ-N conditions (the red and the green lines approach
the 50% chance level, although the red DEM-ADJ-N line is still
somewhat lower, indicating a small preference for the linear
order). This is not the case for the DEM-NUM-N condition.
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Figure 2: Percentage of sentence pairs for which the ON-
LSTM model shows preference for the homomorphic word
order. Results are averaged over training/test sets and test
items, error bands show the standard error of the mean over
different test items.

Our simple analysis of bigram frequencies in the English pre-
training data suggests that this result can be explained by the
much higher frequencies of DEM-NUM bigrams (e.g., that one,
those six; average frequency 161.1), compared to DEM-ADJ
(e.g., that blue; average frequency 2.5) and NUM-ADJ bigrams
(e.g., three wooden; average frequency 0.9) in the training data.
The model is more likely to ‘memorize’ the high-frequency
patterns, so that even after relatively large amounts of expo-
sure to the artificial language, the DEM-NUM order is still
transferred to the artificial language data to a larger extent,
followed by DEM-ADJ and NUM-ADJ.

To ensure the reported results are statistically significant, we
fit a series of mixed-effects logistic regression models (one per
condition) to the data, with fixed effect of epoch, and random
intercepts over stimulus, train–test subset, and subject–verb
combination. Because there is a clear change in the model’s
preferences for all conditions between epochs 5 and 10, we
fit separate regressions for epochs 0–5 and 10-25. The results
suggest that early on during the artificial language learning
the model’s preferences for the non-homomorphic order are
significantly different from chance in all three conditions:
the intercepts are −4.3, −18.8, and −3.1 in the DEM-ADJ-
N, DEM-NUM-N, and NUM-ADJ-N conditions, respectively,
with all p < .001. Later, this preference is only significant in
the DEM-ADJ-N and DEM-NUM-N (intercepts are −13.3 and
−25.8, respectively, both p < .001), but not in the NUM-ADJ-
N condition (intercept −3.9, p = 0.248), which supports our
earlier observations.

To summarize, the LSTM model shows a preference for
non-homomorphic word order, as expected. This suggests
that the homomorphism preference observed by Culbertson
& Adger (2014) does not simply arise in any learning model
from unknown properties of training data. We now proceed
with the results for the two hierarchical models.



ON-LSTM
Figure 2 shows the results for the ON-LSTM model. After pre-
training (epoch 0) the model’s preferences are approximately
at chance level in all three conditions. Later in training the
preferences diverge: in the NUM-ADJ-N condition (see the
green line), the preference stays close to chance level, while
in the other two conditions (the red and blue lines) we observe
a preference for the homomorphic word order (up to 74.9%).

As in the previous section, we fit a series of mixed-effects
logistic regressions to the data, this time separately for epoch 0
and epochs 7–10. This analysis supports the observed patterns:
initially the model’s preferences are not significantly different
from chance (DEM-ADJ-N: intercept is 0.03, p = .815; DEM-
NUM-N: intercept is 0.03, p = .863; NUM-ADJ-N: intercept
is −0.01, p = .935), but later during training the preference
for the homomorphic word order is significantly higher than
chance in the DEM-ADJ-N and DEM-NUM-N (intercepts are
8.74 and 11.9, respectively; both p < .001), but not the NUM-
ADJ-N condition (intercept 1.1, p = .227). This mirrors the
findings of Martin et al. (2020): as we mentioned in the Back-
ground section, in their experiments the preference for the
homomorphic word order was less reliable in the NUM-ADJ-N
condition, compared to the other two. At the same time, it is
unclear exactly what causes the differences across conditions
in our model.

RNNG
Figure 3a shows the results for the RNNG model. As with
the previous models, we again observe differences across the
three conditions, but the pattern of preferences is not the same
as either in the LSTM or the ON-LSTM. In the NUM-ADJ-N
condition (green line), we initially observe no preference, but
later in learning the RNNG develops a preference for the ho-
momorphic word order. In contrast, in the DEM-ADJ-N and
DEM-NUM-N conditions (red and blue lines, respectively) we
see preferences for the non-homomorphic word order through-
out the learning. As in the previous sections, mixed-effects
logistic regressions with the same predictors fitted to the data
from the later epochs (after epoch 12) show that the model’s
preferences at the later stages of learning differ from chance,
and these differences are statistically significant (the intercepts
are: −2.6 for DEM-ADJ-N, −2.3 for DEM-NUM-N, and 1.9 for
NUM-ADJ-N, note the different sign in the last condition).

Recall that this computational model is trained to parse the
data, and it may be the case that our result is merely an artifact
of the model being unable to correctly parse the test sentences.
To ensure this is not the case, we ran an additional analysis in
which we only considered the RNNG’s responses with noun
phrases parsed correctly in both sentences. Figure 3b shows
the results for this subset of the data: note that many data
points are missing from the early epochs, suggesting that the
RNNG has not learned to correctly parse the postnominal noun
phrases yet. Later in learning, we see that the main qualitative
patterns of results for each condition stay the same as for all
test sentences, although the preferences are more extreme.

0

25

50

75

100

0 3 6 9 12 15 18

Artificial training epoch

H
o

m
om

or
p

hi
c 

p
at

te
rn

s,
 %

(a) All sentences

0

25

50

75

100

0 3 6 9 12 15 18

Artificial training epoch

H
o

m
om

or
p

hi
c 

p
at

te
rn

s,
 %

(b) Sentences with correctly parsed noun phrases
Original High-frequency Low-frequency

0 3 6 9 12 15 18 0 3 6 9 12 15 18 0 3 6 9 12 15 18

0

25

50

75

100

Artificial training epoch

H
om

om
or

ph
ic

 p
at

te
rn

s,
 %

Condition ᴅᴇᴍ-ᴀᴅᴊ-ɴ ᴅᴇᴍ-ɴᴜᴍ-ɴ ɴᴜᴍ-ᴀᴅᴊ-ɴ

(c) All sentences, per noun type

Figure 3: Percentage of sentence pairs for which the RNNG
model shows preference for the homomorphic word order.
Results are averaged over training/test sets and test items,
error bands show the standard error of the mean over different
test items.

Finally, recall that we had three types of nouns in our test
stimuli for this model: the original nouns from Culbertson
& Adger (2014), high-frequency, and low-frequency nouns.
Figure 3c shows the results per noun type. Again, we see no
substantial differences across the noun types, except small
differences in the middle of the learning for the DEM-NUM-N
condition (compare the blue lines across the three panels).

These additional analyses suggest that the emergent word
order preferences in the RNNG model do not arise from the
lack of parsing ability and are stable across the nouns of dif-
ferent frequency. Surprisingly, this pattern of homomorphism
preference only in the NUM-ADJ-N condition is different from
that observed in our ON-LSTM model in the previous section
and reported in Martin et al. (2020).



Discussion
In this study we have asked whether computational language
models show a homomorphism bias when inferring the order
of nominal modifiers in noun phrases. This bias is consistently
observed in human speakers and has been argued to explain
why homomorphic orders are more common in the world’s
languages. We focused on the artificial language learning
experiments of Culbertson & Adger (2014) in which this bias
was first observed. We first tested an LSTM model without
any hierarchical biases in the input or in its architecture. As
expected, we found either no preference, or a preference for
the non-homomorphic order, depending on the condition. This
supports the claim made in Culbertson & Adger (2014) that
the word order preferences of human learners do not arise from
information about the linear word order of noun modifiers.

We then tested two hierarchical models. The ON-LSTM
model was trained on text input and only showed a homomor-
phism bias in two out of the three conditions we tested (phrases
with demonstratives and adjectives, and phrases with demon-
stratives and numerals). Interestingly, the RNNG model,
which was explicitly trained to parse tree structures in the
input, showed the target bias in the other condition (phrases
with numerals and adjectives).

To answer our main question, these results suggest that hier-
archical computational models can exhibit a homomorphism
bias. At the same time, it is unclear yet what causes the differ-
ences between the two models, ON-LSTM and RNNG. Our
additional analyses of the RNNG’s word order preferences
in correctly parsed sentences and for different types of nouns
did not shed light on the issue. Note that the two models are
very different: in the ON-LSTM, hierarchical relations emerge
implicitly thanks to the model’s architecture; in the RNNG
model, explicit information is provided about the tree structure
of every input sequence. Further investigation of the models’
biases is needed to interpret the reported differences. One
option would be to train and test these two models on multiple
versions of artificial languages that differ in their word order
outside of the noun phrase (as in White & Cotterell, 2021;
Ravfogel et al., 2019). Future research could also examine
the nature of the homomorphism bias in our models. Recall
that this bias reflects the proposed hierarchy of meanings of
various noun modifiers, and this hierarchy has been argued to
reflect conceptual structure, grounded in statistical properties
of the real world (Culbertson et al., 2020). At the same time,
semantic representations in language models are not grounded
in the real world, but emerge from the distributional properties
of language. Therefore, one can study the models’ represen-
tations in search of the hierarchy of meanings. A presence
of such a hierarchy in a model’s representation space would
indicate a true bias for homomorphism in that model. If the
hierarchy is not found, the model’s preferences for hierarchical
generalizations must be explained by other factors.

Regarding the differences across conditions in each model,
we can speculate that these are due to differences in the distri-
butional information of the relevant elements: depending on

the condition, test words and their collocations (bigrams and
trigrams) can occur more or less frequently in the pre-training
input data, and the interplay of such distributional information
with architecture-specific properties of each model may lead to
meaningful differences in preferred order. Our analysis of the
English input corpus showed that bigram frequencies could
explain differences across conditions for the LSTM model, but
the preference patterns found in the two hierarchical models
need to be examined further in future work.

It is also worth noting that because our language model has
no metalinguistic knowledge, it processes artificial language
sentences as if they come from English. One the one hand,
this helps us to ensure that the models have encoded some
aspects of the meaning of the target words before learning the
artificial language. On the other hand, this sometimes yields
unrealistic results in our simulations, as the models start for-
getting English word order and instead show a preference for
one of the two word orders with postnominal noun modifiers,
a pattern known as catastrophic forgetting.

Finally, our results suggest that out of the three models, the
ON-LSTM shows the pattern of word order preferences most
similar to human speakers: first, it shows the target bias in
two out of the three conditions, and second, the condition in
which it does not show the bias (noun phrases with numerals
and adjectives) is the one for which the preference in human
speakers was found to be the least reliable (Martin et al., 2020).
This result suggests that the ON-LSTM may be better than the
RNNG in predicting some human-like biases, which contrasts
with the findings of McCoy et al. (2020), who found the pres-
ence of explicit tree structures in the input (as in the RNNG
model) to be an important condition for the model to show
human-like hierarchical biases. This warrants a more rigorous
evaluation of the two models in future research.
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